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Abstract: In recent years, many application deployment technologies have emerged such as configuration management
tools, e.g., Chef and Juju, infrastructure and platform technologies, e.g., Cloud Foundry and OpenStack, as
well as container-based approaches, e.g., Docker. As a result, many repositories exist which contain executable
and heavily used artifacts that can be used with these technologies, e.g., to deploy a WordPress application.
However, to automate the deployment of more complex applications, typically, multiple of these technologies
have to be used in combination. Thus, often, diverse artifacts stored in different repositories need to be
integrated. This requires expertise about each technology and leads to a manual, complex, and error-prone
integration step. In this paper, we tackle these issues: We present a method and system architecture that enables
crawling repositories in order to transform the contained artifacts into technology-agnostic topology models,
each describing the components that get installed as well as their dependencies. We show how these topologies
can be combined to model the deployment of complex applications and how the resulting topology can be
deployed automatically by one runtime. To prove the feasibility, we developed and evaluated a prototype
based on the TOSCA standard and conducted a case study for Chef artifacts.

1 INTRODUCTION

In recent years, Cloud Computing gained a lot
of attention as it helps to achieve flexible IT opera-
tion (Leymann, 2009). To automate the deployment
of Cloud applications, besides the proprietary APIs
offered by providers, many additional technologies
have been developed that focus on different kinds of
functionality. Among these technologies there are,
e.g., several configuration management tools, e.g.,
Ansible, Chef, Juju, and Puppet; infrastructure and
platform technologies, e.g., OpenStack and Cloud
Foundry; as well as container-based approaches, e.g.,
Docker. Due to the heavy usage of these technolo-
gies, many open-source repositories have emerged
that contain executable and heavily used artifacts that
can be used by these technologies to deploy the de-
sired application. For example, the Chef Supermar-
ket1 contains a plethora of cookbooks that can be used
by the Chef runtime chef-client (Taylor and Vargo,
2014) to automatically deploy a certain application.
Thus, installing, for instance, a WordPress application
can be automated efficiently by reusing the cookbook.

1https://supermarket.chef.io/

However, reusing such artifacts comes with two
challenges to be tackled: (i) Selecting appropriate ar-
tifacts often requires deep technology-specific exper-
tise to understand the effect of executing an artifact
and to configure the runtime correctly. For example,
if a Chef cookbook shall be used to deploy Word-
Press, the cookbook needs to be analyzed to ensure
that exactly the desired configuration gets deployed.
In addition, the Chef runtime needs to be configured
to deploy the application to virtual machine(s). Un-
fortunately, efficiently getting a quick overview of the
components that get installed by an artifact and their
dependencies is often not possible without highly spe-
cific domain expertise – especially as intuitive graph-
ical tooling is missing in many technologies.

(ii) While understanding artifacts is a serious chal-
lenge, combining them to deploy non-trivial applica-
tions is another challenge that needs to be tackled in
real-world scenarios. For complex applications, typ-
ically, multiple management technologies have to be
integrated (Breitenbücher et al., 2013): the APIs of
Cloud providers must be invoked to deploy virtual
machines whereas configuration management tech-
nologies, e.g., may be used to deploy the desired com-
ponents on the provisioned virtual machines.



However, such combinations often require enor-
mous expertise when multiple heterogeneous services
need to be orchestrated, low-level technologies have
to be wrapped, and diverse data formats must be inte-
grated – to name a few challenges (Eilam et al., 2011).
Thus, manually executing these steps is error-prone,
time-consuming, and, therefore, not efficient (Breit-
enbücher et al., 2014). In this paper, we tackle these
issues by introducing the Topologize method.

We present the Topologize Method and System Ar-
chitecture that enables automated crawling of differ-
ent kinds of repositories, e.g., Chef Supermarket, in
order to transform the contained technology-specific
artifacts into technology-agnostic topology models.
Each generated topology model is a directed, labeled
graph describing the components that get installed by
a certain artifact as well as the relations between the
components. Thus, the generated topology models
ease understanding the functionality of artifacts since
graphs can be interpreted without requiring any ex-
pertise about the employed technology, the artifact,
and its serialization format. Moreover, we show that
these generated topology models can be combined in
a technology-agnostic manner to model the deploy-
ment and provisioning of complex applications us-
ing a single runtime. Thus, no manual integration of
different technologies is required if diverse artifacts
needs to be combined. To achieve this, we combine
our method and system architecture with the TOSCA
standard (OASIS, 2013b) that provides a sophisti-
cated means to integrate arbitrary kinds of manage-
ment technologies. To validate the practical feasibil-
ity of our approach, we developed a prototype that
is integrated with the OpenTOSCA Ecosystem (Binz
et al., 2013a), a standards-based implementation of
the TOSCA standard. Moreover, we conducted a case
study based on the configuration management tech-
nology Chef to show how the presented architecture
and concepts can be applied to a technology.

The remainder of this paper is structured as fol-
lows. In Section 2, we motivate our work. In Sec-
tion 3, we introduce our Topologize method enabling
to crawl repositories and transform the contained ar-
tifacts into technology-agnostic topology models. In
Section 4, we present the Topologize System Architec-
ture that describes a system capable of automatically
executing this method. Section 5 introduces TOSCA.
To validate the feasibility of our approach, in Section
6, we describe a prototypical implementation of this
system architecture. In Section 7, we describe a case
study in which we apply our method to the configu-
ration management technology Chef and evaluate the
prototype. Section 8 describes related work, Section
9 concludes the paper and outlines future work.

2 MOTIVATION

Many deployment automation technologies, e.g.,
configuration management technologies such as An-
sible (Mohaan and Raithatha, 2014), Chef (Taylor and
Vargo, 2014), or Puppet (Uphill, 2014) come with
huge open-source repositories that contain a plethora
of artifacts usable for deployment. Typically, these ar-
tifacts, e.g., scripts, have to be adapted, deployed, and
executed in correct order to install the desired applica-
tion. The Chef Supermarket is one example that pro-
vides cookbooks for installing different kinds of ap-
plications, e.g., middleware components or database
systems. Another example are GitHub repositories
containing source code of applications and scripts for
building and deploying the application. Furthermore,
the documentation about artifacts and how to execute
them is typically available in natural language. How-
ever, to ensure achieving the desired deployment and
installation, artifacts and their implications must be
analyzed and understood in detail to avoid undesired
configurations or – in general – undesired results. Un-
fortunately, correctly interpreting all effects of exe-
cuting such artifacts typically requires deep techni-
cal expertise about the used technology because the
mentioned technologies employ different approaches,
meta models, and serialization formats.

Especially, the heterogeneity and diversity of de-
ployment automation technologies lead to serious in-
tegration challenges if multiple technologies have to
be combined (Breitenbücher et al., 2013). To achieve
this, often the workflow technology is used for or-
chestration purposes (Arshad et al., 2007; Bellavista
et al., 2013; Breitenbücher et al., 2014; Keller and
Badonnel, 2004; Mietzner et al., 2009). However,
even if an orchestration approach is used for integrat-
ing different technologies, nevertheless, (i) the indi-
vidual artifacts and their effects must be understood
to achieve the desired goals, (ii) the orchestration flow
must be specified, and (iii) wrappers need to be imple-
mented and configured. In addition, the used runtimes
must be installed, maintained, and updated, which
typically takes a serious amount of time (Brown and
Hellerstein, 2005). Thus, a normalized model is desir-
able that only describes the desired application and its
deployment without the technical details of the tech-
nologies used to deploy distinct parts of the model.

For many technologies, these artifacts are files that
reference other files, thus, the files are linked. How-
ever, inspecting all the possible dependencies manu-
ally to determine the components that get installed is
significantly more error-prone, knowledge-intensive,
and time-consuming than having a short look on a
structured graphical diagram such as a topology.
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Figure 1: Overview of the Topologize method and its steps.

3 THE TOPOLOGIZE METHOD

In this section, we introduce the Topologize
method and its five steps. Figure 1 depicts the Topol-
ogize method, its steps, and the transformation of
crawled, technology-specific artifacts to topologies.

3.1 Goal of the Topologize Method

The goal of the method is to crawl different kinds of
repositories, e.g., the Chef Supermarket, in order to
transform the contained technology-specific artifacts
into technology-agnostic topology models. The gen-
erated topology models (i) support the understanding
of artifacts, which is typically not trivial as correctly
interpreting the flat and linked files of a certain tech-
nology and its serialization format often requires deep
technical expertise, cf. Section 2. Moreover, (ii) the
generated topology models can be easily combined in
a technology-agnostic manner to model the deploy-
ment of more complex applications that consist of dif-
ferent building blocks. If, e.g., an artifact describes
the automated installation of a database setup while
another artifact of a different technology describes the
deployment of a Web-frontend, combining the tech-
nologies is error-prone and knowledge-intensive con-
trary to combining only technology-agnostic topology
models. We will introduce a system architecture in
Section 4 that enables automating the deployment of
the resulting topology models by one runtime.

3.2 Step 1: Specify Resources

There are various kinds of repositories available, e.g.,
many configuration management technology commu-
nities, such as of Ansible, Chef, and Puppet, provide
open-source repositories that contain various artifacts
for the technologies. One example is the Chef Su-
permarket providing cookbooks for different kinds of
applications, middleware components, database sys-
tems, and more. In the first step of the method, the
repositories are specified that shall be crawled.

3.3 Step 2: Crawl Artifacts

In step two, the specified repositories are crawled for
artifacts. Queries may be specified that describe char-
acteristics of the artifacts to be captured, e.g., that
only database installation artifacts shall be crawled.

3.4 Step 3: Extract Components

In step three, all artifacts are analyzed in a
technology-specific manner to determine the com-
ponents, their characteristics, and meta information.
These components are stored separately in the form of
definitions documents and meta information, e.g., the
license information, are attached to these documents.

3.5 Step 4: Derive Topology Models

In step four, the analyzed artifacts and their meta
information are interpreted in a technology-specific
manner in order to derive the structure of the ap-
plication that gets installed by an artifact, i.e., the
components that are installed and their relationships.
This structure is captured in the form of a topology
model, which is a technology-agnostic, directed, la-
beled graph wherein nodes describe the components
and edges their dependencies. The generated topolo-
gies serve as normalized models that describe the
functionality of artifacts independently of the actual
technologies. Thus, they can be understood by non-
experts as no expertise about technologies is required.
For serializing topology models, the OASIS TOSCA
standard (OASIS, 2013b) can be used, for which a vi-
sual notation is available (Breitenbücher et al., 2012).

3.6 Step 5: Make Topologies Deployable

In this (optional) step, the topology models are refined
to enable their automated deployment if the origi-
nal artifacts did not include all required information.
For example, if a Chef cookbook only describes a
database installation, an operating system and virtual
machine node gets added to the topology model.
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Figure 2: The general system architecture implementing the Topologize method.

4 SYSTEM ARCHITECTURE

In this section, we describe a system architecture
for implementing the Topologize method proposed in
Section 3. The system architecture is sketched in Fig-
ure 2. At the top left, databases are depicted that rep-
resent repositories containing technology-specific ar-
tifacts. These repositories are (1) specified by stating
the resource location and type and registered at the
Crawler. This corresponds to the first step Specify
Resources of the Topologize method.

Then, (2) the Crawler discovers and identifies ar-
tifacts in the defined repository by executing an ap-
propriate plug-in. Each plug-in comprises the spe-
cific functionality to process a location specification,
identify contained artifact representations, and obtain
the artifacts. Also, meta information about artifacts
are gathered, e.g., name and version. Then, (3) each
crawled artifact and its information are stored within
the Artifact Repository. This corresponds to the sec-
ond step Crawl Artifacts of the Topologize method.

The Topologizer processes the artifacts, interprets
the contained component and structure information,
and derives topology models. These models may con-
tain components whose requirements are only partly
satisfied. Thus, additional information or additional
components may be required for the model being
deployable. For being able to analyze technology-
specific artifacts, (4) a plug-in mechanism is imple-
mented within the Topologizer. The Component Rec-
ognizer and Builder (5) analyzes technology-specific
artifacts and extracts technology-agnostic component
definitions and meta information about them, for ex-
ample, requirement statements. All components and

their information are stored in the Components Repos-
itory. This corresponds to the third step Extract Com-
ponents of the Topologize method.

The Topology Recognizer and Builder (6) in-
terprets component information and infers topology
models. The artifacts in the components within the
Components Repository expose their requirements,
thus, using these information the Topology Recog-
nizer and Builder searches for components within the
Components Repository that expose appropriate ca-
pabilities. To build topology models, the Topology
Recognizer and Builder creates nodes for each com-
ponent and connects them with edges according to the
requirement statements, cf. Section 6. The result-
ing topology models are stored within the Topology
Model Repository. This corresponds to the fourth step
Derive Topology Models of the Topologize method.

The derived models may not be provisionable be-
cause the original artifacts may not state all required
information, e.g., credentials, or do not define the tar-
get infrastructure, e.g., a specific application server.
Thus, (7) a modeling environment enables the user
to manually customize the topology model or it com-
pletes the topology model in an automated manner.
The topology model is packaged and (8) provided to a
suitable Topology Provisioning Engine for provision-
ing instances of the modeled application. This cor-
responds to the fifth step Make Topology Models De-
ployable of the Topologize method. Therefore, auto-
matically maintaining technology-agnostic topology
models of technology-specific artifacts is enabled as
well as combining them to arbitrary complex topolo-
gies using the technology-agnostic modeling tool.



5 THE TOSCA STANDARD

On this page, we provide the fundamentals of
the Topology and Orchestration Specification for
Cloud Applications (TOSCA) (OASIS, 2013a; OA-
SIS, 2013b) that is used in the prototype to serialize
topology models, cf. Section 6. For giving a brief and
compact background, details are omitted. Details can
be found in the specification (OASIS, 2013b), whilst
hints for the interpretation of the standard are docu-
mented in the TOSCA Primer (OASIS, 2013a).

A topology model – called Topology Template
in TOSCA – is a directed graph in which compo-
nents (vertices) are connected regarding their rela-
tions (edges). The components, e.g., a virtual ma-
chine or a web application, are called Node Templates
and define various characteristics of an instance. The
structure of a topology model can be specified by
Relationship Templates that connect Node Templates
pairwise regarding their interplay. For instance, in
Figure 32 at the left, the Node Template WebShop
is connected with the Node Template Apache-v2.4
via a Relationship Template hostedOn. Furthermore,
semantics are specified by typing the Node Tem-
plates and Relationship Templates: Node and Rela-
tionship Types, respectively, define operations, prop-
erties, capabilities, and requirements of that type of
component or relationship. For instance, the Ubuntu-
v16.04 Node Template references an UbuntuVM-
v16.04 Node Type that defines an IP-Address property
and that this component is a virtual machine. Thus,
for each instance of the Ubuntu-v16.04 Node Tem-
plate, its IP-address is set in the modeled property.

For instantiating Node Templates, various actions
have to be executed. For installing a Web Server Node
Type, for example, a script can be executed that in-
vokes apt-get install. Such a script is executed on
an operating system, thus, the respective Node Tem-
plate is connected to the operating system Node Tem-
plate that exposes an operation execute Script. Op-
erations enable to create and interact with instances
of Node Templates or Relationship Templates, for ex-
ample, realizing the provisioning of instances. For
example, invoking a script execution on a distinct op-
erating system Node Template instance, the operating
system instance has to be accessed. By modeling the
IP address property as input for the execute Script op-
eration, the script invocation execution targets the cor-
rect operating system instance. To foster reusability,
such operations and properties are modeled in Node
Types and Relationship Types. Additionally, Node
Types and Relationship Types support inheritance.

2We use the visual notation VINO4TOSCA (Breit-
enbücher et al., 2012) to render topology models.

DA: PHP App

WebShop
(PHPWebApplication)

IA: deploy App

Apache-v2.4
(ApacheServer-v2.4)

Property: IP-Address
IA: execute Script

Ubuntu-v16.04
(UbuntuVM-v16.04)

hostedOn

hostedOn

DA: DB Schema

WebShopDB
(MySQLDatabase)

IA: init DB Schema

MySQL-v5.7
(MySQLServer-v5.7)

Property: IP-Address
IA: execute Script

Ubuntu-v16.04
(UbuntuVM-v16.04)

hostedOn

hostedOn

(vSphereHypervisor)

hostedOn hostedOn

connectsTo

Figure 3: An exemplary TOSCA Topology Template.

For instantiating the modeled functional compo-
nents, e.g., a customized web application, the imple-
mentation of the components has to be provided by
the respective Node Template. TOSCA defines such
implementations as Deployment Artifacts provided by
Node Templates or Node Types. These Deployment
Artifacts have to be shipped and installed in the target
environment of the application to be instantiated.

Contrary, in the former example of the applica-
tion server, the Node Template can be instantiated
by executing a script that invokes apt-get install. In
this example, the actual implementation of the Node
Template is not provided with the model, but is down-
loaded by apt-get. Such a script is called Implemen-
tation Artifact because it is not solely deployed, but
also executed. An Implementation Artifact can be
processed in three flavors: (i) It is executed by the
TOSCA Runtime Environment in its own environ-
ment, e.g., for accessing an operating system via the
ssh-client. (ii) The script that executes apt-get install
is executed in the application’s target environment.
(iii) Implementation Artifacts that refer, e.g., the inter-
face of a cloud service provider run in their own envi-
ronment and are called directly. To ship such models
and implementations, TOSCA defines the Cloud Ser-
vice Archive (CSAR). A CSAR is self-contained, con-
tains or refers to all required artifacts, and is portable.

It is important that the Topology Template shown
in Figure 3 clearly shows the structure of the applica-
tion that gets provisioned without showing any details
about how this provisioning is technically executed.
Consequently, such models can be understood more
easily than technology-specific artifacts such as Chef
cookbooks. Thus, TOSCA-based topology models
provide a suitable abstraction layer for our intend.
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6 PROTOTYPE

In Section 4, we introduced an architecture for the
Topologize method, cf. Section 3. In this section,
we describe our prototypical implementation for the
Topologize method using TOSCA, cf. Section 5. The
prototype is implemented using Java 83. Details about
the Chef-specific implementation follow in Section 7.

For the step Specify Resources, the location def-
inition (1) comprises the artifact type, location, and
access protocol to a repository containing technology-
specific artifacts and information. This definition (2)
is provided to the Crawler, a Java program that ac-
cesses the repository using an appropriate plug-in.
The identified artifacts (3) are downloaded to disk and
some meta information, for example, name and ver-
sion are stored. This corresponds to the step Crawl
Artifacts. We implemented a corresponding plug-in
for Chef, details are provided in the next section.

Within the Topologizer, the Component Recog-
nizer and Builder accesses the disk and processes
the technology-specific artifacts. Each artifact is
unpacked and its contents are analyzed, cf. Sec-
tion 7. Then, (4) the artifact is transfered to a TOSCA
Node Type using TOSCAfy4. TOSCAfy is an open-
source framework for analyzing artifacts and gen-
erating TOSCA Node Types. The resulting CSAR
(5) contains the Node Type and is downloaded to
disk. The artifact is stored as Implementation Arti-
fact at the Node Type. Furthermore, meta data re-
sulting of the analysis (5) are stored in a MongoDB5

database. MongoDB was chosen because of its abil-
ities to handle documents that are not mapped to a
relational scheme, e.g., TOSCA XML and meta data
JSON documents. This corresponds to the step Ex-
tract Components of the Topologize method.

3https://www.java.com/
4https://github.com/toscafy/
5https://www.mongodb.com/

Within the Topologizer, available structure in-
formation in the found artifacts are processed by
the Topology Recognizer and Builder. For deriving
topology models, the exposed requirements are tried
to be satisfied with the capabilities of components
within Node Types that are found by the Component
Recognizer and Builder and located in the Compo-
nents Repository. Thus, due to this exploration, topol-
ogy models can be built. This is implemented with an
adaption of the depth-first search (Tarjan, 1972).

Duplicate requirements stated by different arti-
facts within the same topology model are eliminated
according (Binz et al., 2013b). This may lead to a
topology model that does not reflect exactly the struc-
ture of the original artifact, but is necessary for not
representing duplicate requirements, e.g., Java, mul-
tiple times as a Node Template. Each derived topol-
ogy model is serialized using TOSCA, cf. Section 5,
for example, by using TOSCAfy to define and gen-
erate a TOSCA Definitions containing the topology
model, all components and relations, and the artifact
resources. Finally, the CSAR (6) is stored to the local
disk. This corresponds to the step Derive Topology
Models of the Topologize method.

Often, derived topology models are not provision-
able directly because of missing information. There-
fore, the CSARs are not only stored locally on disk,
but also (8) sent to the TOSCA Modeling Tool Win-
ery6 enabling the graphical and user-friendly cus-
tomization of the derived topology models. Thus,
a user is enabled to inject credentials and even cus-
tomize the whole TOSCA Topology Template. More-
over, TOSCA completion algorithms can automati-
cally complete the topology model if components are
missing (Hirmer et al., 2014), for example, to inject a
Cloud provider Node Template which is typically not
described in Chef cookbooks. This corresponds to the
step Make Topology Models Deployable.

6https://projects.eclipse.org/projects/soa.winery



Based on the standardized TOSCA metamodel,
topology models generated out of technology-specific
artifacts can be combined easily to compose more
complex applications: the crawled topology mod-
els can be used as building blocks in a technology-
agnostic manner for the development of new appli-
cations on the TOSCA-layer. The graphical model-
ing tool Winery (Kopp et al., 2013) can be used, e.g.,
to merge such topology models. Thus, the resulting
and merged topology models may contain Implemen-
tation Artifacts of different technologies, which is in-
herently supported by the TOSCA standard. To de-
ploy such merged topology models that contain Node
Templates and Types having Implementation Arti-
facts implemented in different technologies, we de-
veloped a plan generator (Breitenbücher et al., 2014)
within the OpenTOSCA Runtime Environment (Binz
et al., 2013a) that is capable of executing different
kinds of artifacts. The generator supports technolo-
gies, for example, Chef, Ansible, and Docker. Thus,
with our approach, artifacts of different technologies
can be combined in a technology-agnostic manner on
the TOSCA-layer, while the resulting topology model
can be deployed automatically by a single runtime –
in this prototype using the OpenTOSCA ecosystem7.

7 CASE STUDY: CHEF

In Section 6, we introduced a prototype imple-
menting generically the Topologize method. In this
section, we provide a case study showing how to ap-
ply and implement the method for Chef cookbooks.

7.1 Specify the Chef Resources

In the first step, we specify the artifact location and
type. The Chef Software Inc. itself provides a pub-
licly available repository for Chef cookbooks: the
Chef Supermarket8. Therefore, we specified the
HTTP API of the Chef Supermarket as location and
the artifact type cookbook. For crawling the Chef Su-
permarket, we implemented a respective plug-in that
processes the location specification.

7.2 Crawl for Chef Cookbooks

In the second step, the Crawler searches for artifacts at
the specified location. The plug-in for the Chef Super-
market employs the JAX-RS Client API of Jersey9 to

7http://www.opentosca.org
8https://supermarket.chef.io/
9https://jersey.java.net/

download the cookbooks and retrieve meta informa-
tion. Most of the information and artifacts were ac-
cessible whilst some could not be processed because
these cookbooks could not be downloaded.

7.3 Extract the Components

In the third step, the found cookbooks are analyzed to
identify components, extracting characteristics, and
build TOSCA Node Types. A cookbook states its
attributes and templates, includes recipes and files,
and provides necessary extensions to the chef-client
for enabling it to instantiate the cookbook. There-
fore, such a cookbook correlates to a Node Type. The
detailed mapping of cookbooks to Node Types can
be found in (Wettinger et al., 2014b). For building
TOSCA Node Types, we used TOSCAfy.

Besides the transformation to a Node Type, the re-
quirement information of the cookbook have to be
extracted. The chef version, ohai version, and de-
pends are distinct requirements, but the supported
platforms have to be treated differently: a cookbook
instance cannot be installed on, e.g., Windows and
Linux at once, thus, these requirements have to be
treated mutually exclusive. Chef has no cookbooks
for installing, e.g., Linux, thus, the platform informa-
tion cannot be satisfied. These information are needed
later for deriving the topology models regarding the
capabilities and requirements of the cookbooks.

7.4 Derive Topology Models

In the third step, an extensive repository of TOSCA
Node Types is built up containing many cookbooks
with requirements. Thus, by traversing transitively all
requirements, cf. Section 6, topology models are con-
structed that represent the requirements graph of the
initial cookbook. Using TOSCAfy, the TOSCA Def-
initions containing the constructed topology model
and the cookbooks are packaged to a CSAR.

In Figure 5, a Chef metadata.json file is depicted
on the left side. This file defines the cookbook’s
name, version, some meta information, e.g., its de-
scription and license, and the cookbook’s dependen-
cies that refer to other cookbooks. In this example, the
java cookbook defines the cookbooks apt, homebrew,
and windows as requirements. Derived from these
information, the java component and its resolved re-
quirements are represented as Node Templates in a
Topology Template, of which a snippet is depicted on
the right. Further resolved requirements of cookbooks
are omitted for the sake of brevity.



{
"name": "java",
"description": "Installs Java runtime.",
"version": "1.47.0",
"license": "Apache 2.0", 
"dependencies": {

"apt": ">= 0.0.0", 
"homebrew": ">= 0.0.0",
"windows": ">= 0.0.0"

}
}

dependsOn

java-1.47.0_NodeTemplate
(java-1.47.0_NodeType)

windows-2.1.1_NodeTemplate
(windows-2.1.1_NodeType)

apt-5.0.0_NodeTemplate
(apt-5.0.0_NodeType)

metadata.json TOSCA Topology Template Snippet

Figure 5: A Chef metadata.json file mapped to a TOSCA Topology Template representation.

7.5 Make the Topology Models
Deployable

The constructed topology models are not provision-
able, because Chef presumes a bootstrapped environ-
ment that is not installed by Chef itself. Thus, detailed
information about the infrastructure layer are miss-
ing. Within the OpenTOSCA ecosystem, the fifth step
Make Topology Models Deployable can be applied by
using Winery, cf. Section 6. Using the topology mod-
eler of Winery, the generated topology model can be
completed by adding customized infrastructure infor-
mation. Thus, using the Topologize method, cook-
books can be used to provision applications to not
bootstrapped environments. Also, topology models
can be composed to arbitrary complex topology mod-
els without needing to have expertise of the composed
cookbooks. Additionally, Winery serves as TOSCA
Repository for the provisioning engine OpenTOSCA
that enables automated provisioning.

7.6 Evaluation Results

In this section, we showed how the Topologize
method can be applied to Chef. Using our proto-
type and Topologize method, we crawled 3,191 Chef
cookbook files from the Chef Marketplace on the
17th February 2017 and derived 2,325 topology mod-
els from the cookbook artifacts. In Figure 6, the size
of each topology model, i.e., the amount of the con-
tained components, is related to the amount of topol-
ogy models derived by the prototype. With a big gap,
the most found topology models are singletons whose
component either is not stating requirements or the
stated requirements are older, not crawled versions or
not processable cookbooks that could not be resolved.

In Figure 7, we address the time that it takes to
analyze a cookbook for which a topology model shall
be constructed and – basing on that knowledge – de-
rive and construct the topology model from the initial
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Figure 6: Relation of the amount of Node Templates con-
tained in a topology model to the amount of topologies.
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Figure 7: Relation of the amount of Node Templates con-
tained in a topology model to the duration in seconds for
analyzing the artifact and constructing the respective topol-
ogy. The stated durations are result of 10 measurements.

cookbook and all requirements. These values result
from 10 measurements on Ubuntu 16.04 virtual ma-
chines with 8 cores having 3.0GHz and 16 GB RAM.
At first glance, a duration of up to 70 seconds for
topology models seems to be vast. But, as our goal is
having an efficient approach for transforming artifacts
into technology-agnostic topologies, the Topologize
method is suitable, because the time-costly construc-
tion of topology models has to be done only once.



8 RELATED WORK

Cloud Computing enables many benefits, e.g., on-
demand provisioning and resource sharing (Leymann,
2009). Whilst some reduce Cloud Computing to
merely packaging functionality into a virtual machine
or container, in fact, the application usually forms a
complex structure that has to provide distinct prop-
erties (Leymann et al., 2016). Creating a more de-
tailed view of such architectures can be visualized as a
graph of components and their relations, detailed with
information about their functional capabilities and re-
quirements, policies of non-functional requirements,
interfaces, properties for customization, and defini-
tions about included or referenced resources. Such
a graph is called a topology and is defined in the
industry-driven standard Topology and Orchestration
Specification for Cloud Applications (OASIS, 2013a;
OASIS, 2013b) and refined in (OASIS, 2015).

TOSCA defines a topology model that describes
in detail the structure of an application. A topology
consists of components that are related to each other,
e.g., a web application is hosted on an application
server. The components, relations, and other elements
are typed to foster the reusability. Thus, TOSCA en-
ables manifold benefits: the TOSCA Definitions may
contain a model of components and structures with
clear semantics that enables modeling complex ap-
plications in a visual encoded way (Breitenbücher
et al., 2012) using specific tooling. With Winery,
the whole complexity of TOSCA is accessible to hu-
man modelers in a visual and guided manner (Kopp
et al., 2013). By matching not satisfied requirements
of components within the topology with capabilities
of other components, topology models can be com-
pleted (Hirmer et al., 2014). Thus, TOSCA enables
humans to understand and model more easily such
complex applications. Additionally, TOSCA enables
the automation of management of arbitrary complex
applications. For application topologies consisting of
components with well-defined provisioning and man-
agement functionality, the orchestrated provisioning
logic can be generated (Breitenbücher et al., 2014;
Eilam et al., 2011). For arbitrary complex and cus-
tomized applications, e.g., prepared workflows can be
provided directly with the Service Template.

Contrary, Enterprise Topology Graphs (ETGs) de-
fine a formal model describing the structure of run-
ning enterprise IT to support tasks, e.g., consolida-
tion, migration, or outsourcing by enabling proven
graph algorithms on the model (Binz et al., 2012a;
Binz et al., 2012b). Such tasks are time-consuming
and error-prone if the underlying ETG has to be cre-
ated manually. Therefore, such ETGs can be gener-

ated by an automated discovery that crawls the run-
ning enterprise IT (Binz et al., 2013b). But, ETGs do
not enable modeling and inferring automated provi-
sioning and management of application instances.

The OpenTOSCA ecosystem enables interpreting
TOSCA models and automated provisioning of the
modeled applications (Binz et al., 2013a). Such provi-
sioning can be divided into two opposing approaches:
with imperative provisioning, all steps necessary for
provisioning the application are modeled in full de-
tail, e.g., by using workflow models (Breitenbücher
et al., 2013; Keller and Badonnel, 2004; Mietzner
et al., 2009). The declarative provisioning enables
modeling solely the application with its characteris-
tics. Both approaches require a runtime that is able
to interpret the models, infer management functional-
ity, and execute it. There are various approaches for
automating the provisioning of applications: Ansible,
Chef, Planit, and Puppet, to just name some (Arshad
et al., 2007; Mohaan and Raithatha, 2014; Taylor and
Vargo, 2014; Uphill, 2014). But, all these approaches
are domain- and technology-specific, thus, the user
needs specific expertise and there is a lack of tooling
integrating the heterogeneity of all these technologies.

Although, workflow model based orchestration is
a working approach to integrate diverse provisioning
technologies, the technologies have to be prepared
for being orchestrated beforehand (Wettinger et al.,
2014a; Wettinger et al., 2014b). All artifacts have to
be provisionable and manageable, thus, have to ex-
pose their interfaces. Nevertheless the variety of inter-
faces, with the Any2API10 approach the functionality
of artifacts can be wrapped with high-level APIs, e.g.,
RESTful web services (Wettinger et al., 2015). Thus,
generating distinct models of all components enables
to populate topology models, as shown in this paper.

Subsequent to the Any2API approach,
TOSCAfy11 is a publicly available, open-source
framework that provides two major capabilities: (i)
retrieving and analyzing existing technology-specific
artifacts, e.g., Chef cookbooks and Docker container
images to extract and normalize their metadata; (ii)
generating portable Cloud Service Archives (CSARs)
comprising the artifacts. By using TOSCAfy, CSARs
are no longer maintained manually as source arti-
facts, but they are generated in a repeatable manner.
TOSCAfy is implemented using JavaScript based on
Node.js. Moreover, it is integrated with Any2API.

But, before applying the aforementioned ap-
proaches, artifacts have to be obtained beforehand.
The basic idea of conventional Web crawling follows
a straightforward process: “(1) select a URL to crawl,

10http://www.any2api.org
11https://github.com/toscafy



(2) fetch and parse page, (3) save the important con-
tent, (4) extract URLs from page, (5) add URLs to
queue, and (6) repeat” (Matsudaira, 2014). Follow-
ing this, a broad variety of crawling approaches ex-
ist in research and industry. Consequently, imple-
menting a small-scale crawler, e.g., to fetch a dis-
tinct set of documents from the Web and store them
‘as is’ is a mere programming challenge. How-
ever, it is not trivial to implement large-scale crawlers
that repeatedly fetch large sets of documents to se-
mantically inspect and normalize their content, de-
tect updates, and classify them. Therefore, several
research efforts focus on the design of highly scal-
able and distributed crawlers to improve performance
in large-scale crawling scenarios (Boldi et al., 2004;
Da Silva et al., 1999; Shkapenyuk and Suel, 2002;
Heydon and Najork, 1999; Thelwall, 2001; Edwards
et al., 2001). Thus, there are two major categories
of crawlers: (i) general-purpose crawlers that fetch
and inspect any kind of document, e.g., to popu-
late a search engine or analyze data using mining
techniques (Matsudaira, 2014; Thelwall, 2001); (ii)
specialized and focused crawlers that only inspect
distinct documents (Chakrabarti et al., 1999). Fo-
cused crawling is utilized, e.g., to establish a domain-
specific knowledge base as it is the purpose of this
paper. Therefore, a domain-specific and specialized
crawling framework is presented. However, up to
now, none of the existing works analyzes application
structure information inside of crawled artifacts of
configuration management technologies. Therefore,
the proposed approach is a novel contribution.

9 CONCLUSION

We presented Topologize that enables (i) crawling
technology-specific artifacts, (ii) extracting and ab-
stracting contained component information, and (iii)
inferring technology-agnostic topology models that
(iv) are provisionable in an automated manner. These
models are serialized in TOSCA that enables the
modeling and provisioning of complex, technology-
specific applications whilst keeping a modular, cus-
tomizable, and technology-agnostic topology model.
The topologies are generated by satisfying dependen-
cies of contained components. Benefits of topologies
are (a) a technology-agnostic representation of the
technology-specific implications by showing a com-
ponent’s transitive requirements, (b) automated main-
taining of such topologies, (c) supporting a user in un-
derstanding and selecting artifacts and topology mod-
els, and (d) enabling customization and combination
of topologies in a technology-agnostic manner.

We validated our Topologize method and archi-
tecture by implementing a prototype and applying
Topologize to Chef. On the 17th February 2017, we
crawled 3,191 Chef cookbooks at the Chef Market-
place and transformed these technology-specific ar-
tifacts to technology-agnostic components serialized
in TOSCA. We derived 2,325 topologies that com-
prise the transitive dependencies as far as they could
be satisfied. These constructed topologies are of size
up to 13 components within one topology model. We
evaluated our prototype regarding the analyzing and
constructing duration of topologies and packaging as
CSAR that took between 7.3 seconds 69.4 seconds
depending on the size of the topology.

In this paper, we focused our case study on Chef
that is a well-known configuration management sys-
tem. In the future, we plan to conduct case studies
with other technologies, e.g., Docker. Also, for speed-
ing up the analysis and the inferring of topology mod-
els, we plan to improve the prototype, e.g., by paral-
lelizing the execution of the depth-first search.
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F., and Wettinger, J. (2014). Combining Declarative
and Imperative Cloud Application Provisioning based
on TOSCA. In International Conference on Cloud En-
gineering. IEEE.
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